If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+63t-4=0
a = -16; b = 63; c = -4;
Δ = b2-4ac
Δ = 632-4·(-16)·(-4)
Δ = 3713
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(63)-\sqrt{3713}}{2*-16}=\frac{-63-\sqrt{3713}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(63)+\sqrt{3713}}{2*-16}=\frac{-63+\sqrt{3713}}{-32} $
| (6x+5)(6x+5)=180 | | 64n^2-1=35 | | 301=37.68r+6.28r-301 | | -22-x=-17 | | 6x+5+6x+5=180 | | n/6=13/4 | | 4(x-3)=2(x-1 | | 8x+27=80 | | -3(6v-6)-5(-8v+3)=22v+3 | | 24+k=19 | | 6p-100=-1p-9 | | -7m-13=-1m+5 | | 1.8x=9.6 | | y=25,600/1.01 | | 8x+3x+4x=-36 | | -29=b/7 | | 57.95*x=60+50.45*x | | 16=5y= | | -3(v+12)=2v-37 | | -25+5x=15 | | |2y-8|=|12-2y| | | 2s–1=9 | | 7+f/2=15 | | 9x+78/3=7 | | 6(x)/2=42 | | 7x-6=4x+7 | | 6(9+3y)=-(7•3y)+249 | | A={2b;18} | | 3(8x+2)+2=8(-3x-2)+8 | | 6x-48=36 | | 10y-17=23y | | x12=28 |